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Abstract

Ever since scientists realized that cells are the basic building blocks of all
life, they have been developing tools to look inside them to reveal the archi-
tectures and mechanisms that define their biological functions. Whereas
“looking into cells” is typically said in reference to optical microscopy,
high-resolution in-cell and on-cell nuclear magnetic resonance (NMR) spec-
troscopy is a powerful method that offers exciting new possibilities for struc-
tural and functional studies in and on live cells. In contrast to conventional
imaging techniques, in- and on-cell NMR methods do not provide spatial in-
formation on cellular biomolecules. Instead, they enable atomic-resolution
insights into the native cell states of proteins, nucleic acids, glycans, and
lipids. Here we review recent advances and developments in both fields and
discuss emerging concepts that have been delineated with these methods.
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DEDICATION

This review is dedicated to the memory of Flemming Martin Poulsen (F.M.P.). When asked to name which
mammalian protein was natively present at the highest intracellular concentration (29, 30), students at a recent
summer school on the Greek island of Spetses were speechless. A gentleman in the front row smiled and eventually
provided the correct answer: hemoglobin in red blood cells at ∼5 mM (96). The reason why this man knew the
answer became evident only later. He was the late Flemming Martin Poulsen, the long-term organizer of the school
and an eminent figure in early nuclear magnetic resonance (NMR) work on intact cells. As a postdoctoral scholar
with Chris Dobson, then at Harvard University, Flemming spent much of his time measuring one-dimensional
(1-D) 31P, 1H, and 19F NMR spectra of different blood cells (20, 21), often his own, and he knew their protein
compositions very well. As he said later, 1-D NMR experiments on intact red blood cells revealed the characteristic
hemoglobin envelope known from previous NMR work on the isolated protein (93). These experiments, he added,
may therefore be considered the first high-resolution in-cell NMR measurements. “Since we recorded on NMR
spectrometers of less than 300 MHz field strengths, used primitive pulse sequences (compared to modern standards)
and isotope detection at natural abundance,” Flemming said, “what delight it must be to do in- and on-cell NMR
experiments on modern instruments with advanced, multidimensional pulse-schemes and isotope-labeled samples!”
He was absolutely right.

INTRODUCTION

Underlying most in- and on-cell nuclear magnetic resonance (NMR) applications today is
an elegant and startlingly simple concept: isotopic labeling. With it, we exploit the fact that
isotope-labeled, NMR-visible biomolecules stand out in unlabeled, NMR-inactive environments.
The isotope thereby functions as a selective visualization filter that enables the detection of
structural and functional properties of labeled biomolecules against the backdrop of all unlabeled
cellular components. In that sense, in- and on-cell NMR applications work in much the same
way as fluorescence microscopy. Fluorescence microscopy probes must be chemically attached,
expressed as green fluorescent protein (GFP) fusions, or tagged via fluorescence-conjugated
antibodies. Samples detected with in- or on-cell NMR methods are made visible by selectively
replacing certain atomic nuclei with stable, NMR-active isotopes. Therefore, the actual label
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is a quantum mechanical rather than a chemical property. Biomolecules studied with in- or
on-cell NMR methods contain only natural components that are slightly heavier than their
endogenous counterparts. This is an important aspect of in- and on-cell NMR methods, as all
other cell-based visualization techniques require some form of target modification for detection.
Because isotope-labeled biomolecules need to be selectively enriched or delivered into cells, key
aspects of live cell NMR applications concern the actual sample preparation process.

IN-CELL NMR IN PROKARYOTES

In most cases, isotopic labeling of recombinant proteins is achieved in Escherichia coli. Bacteria
are grown in media containing 15N-ammonium chloride, 13C-glucose, or D2O as the only
source of metabolic precursors. Upon induction of recombinant protein expression, 15N-, 13C-,
or 2H-isotopes are incorporated into the newly synthesized polypeptides. For general in- and
on-cell NMR experiments in prokaryotes and for in-cell NMR applications in yeast, insect, and
mammalian cells, overexpressed proteins are directly analyzed inside the expression host (87)
(Figure 1a). Because bacterial T7 expression systems yield remarkably high levels of intracellular
proteins, isotope-labeled specimens can be rapidly generated.

In practice, unlabeled growth media are substituted with isotope-labeled media shortly before
induction (87). Because T7-dependent, recombinant protein production outperforms endogenous
protein synthesis, plasmid-encoded polypeptides constitute the only isotope-labeled species in the
cells. When recombinant protein expression levels are high, the resulting in-cell NMR spectra are
virtually free of background labeling artifacts. Protein overexpression, isotopic labeling, and NMR
measurements in the same cellular system provide advantages and disadvantages. On the positive
side, bacterial in-cell NMR samples are prepared quickly (90), and, provided that isotope-labeled
proteins tumble freely in the cytoplasm and do not overly interact with cellular components such as
membranes, in-cell NMR detection by solution-state methods is straightforward. Whenever target
proteins are inserted into membranes, solid-state in- or on-cell NMR approaches are more suitable
and are usually chosen (74). On the negative side, recombinant protein production is difficult to
control, and absolute intracellular protein concentrations are hard to quantify and reproduce
precisely. Intracellular protein solubility may also negatively affect in-cell NMR results. Because
large amounts of recombinant proteins often lead to intracellular aggregation and precipitation,
bacteria package excess proteins into inclusion bodies, which is deleterious for solution-state in-cell
NMR efforts but amenable to solid-state NMR approaches (24, 102). If, however, recombinant
protein expression levels are low and lengthy induction times are required to reach sufficient
amounts of intracellular protein, decreased cell viability and increased background labeling often
hamper in-cell NMR analyses.

IN-CELL NMR IN EUKARYOTES

The bacterial rationale of sample overexpression, isotopic labeling, and in-cell NMR measure-
ments within the same cell type, which, until recently, was not considered a viable option for in-cell
NMR sample generation in eukaryotes, has now been achieved in yeast (16), insect (33), and mam-
malian cells (11, 12) (Figure 1b–d). The Shekhtman group (16) used Pichia pastoris and controlled
methanol induction under the strong alcohol oxidase gene 1 promoter (AOX1) to produce yeast in-
cell NMR samples, whereas the Ito, Shirakawa, and Laue laboratories (33) employed baculovirus-
transfected Sf9 cells for in-cell NMR applications in insect cells. The Aricescu and Banci groups
(11, 12) generated mammalian in-cell NMR samples by transient protein overexpression and iso-
topic labeling in human embryonic kidney HEK293T cells driven by the cytomegalovirus (CMV)
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promoter. Despite these strong promoters, protein expression and labeling times were generally
longer than in bacteria and led to substantial degrees of background labeling. For insect and
mammalian in-cell NMR samples, costly commercial isotope-labeling media were used. Whereas
Sf9 cells are nonadherent suspension cells that can be grown in small batch volumes, human
HEK293T grow as single-layer cultures and require larger volumes of isotope-labeled growth
media. Because all of the above methods rely on plasmid- and strong promoter–driven protein
overexpression coupled to induction time–matched isotopic labeling, they exclusively enable the
production of protein in-cell NMR samples.

Alternatively, isotope-labeled biomolecules may be first produced in E. coli, purified, and then
introduced into eukaryotic cells. Sample delivery can be accomplished by microinjection, as for
in-cell NMR applications in Xenopus laevis oocytes (1, 17, 81, 82, 85, 86) (Figure 1e); by active
endocytotic transport via the use of cell-penetrating peptide (CPP) tags (25, 42); or by passive
diffusion through pore-forming toxins (52, 71) (Figure 1f,g). The latter approaches are usually
employed to transduce proteins into cultured mammalian cells. Two of the many advantages of
sample production and isotopic labeling in one cell type and in-cell NMR measurements in another
are that background labeling artifacts are not encountered and that DNA and RNA can also be
delivered for in-cell NMR and electron paramagnetic resonance (EPR) studies (8, 36–38, 40, 51).

SOLUTION-STATE IN-CELL NMR

In the following section, we review recent solution-state in-cell NMR applications that delineate
fundamental physical properties of the intracellular environment and provide unexpected clues
for complex cellular processes. The selection does not reflect a weighting of scientific importance,
quality, or impact. Instead, we provide a level of thematic coherence by discussing in-cell NMR
studies from different groups either on identical proteins in different intracellular environments
or on the same biological topic. We further limit the review to in-cell NMR studies that have not
been previously reviewed (43, 55, 62, 73). We apologize in advance to our colleagues whose work
is not included in this selection.

In-Cell Protein Structure, Dynamics, and Stability

A number of recent solution-state in-cell NMR applications aimed to provide a more detailed
understanding of the physicochemical parameters that shape the intracellular environment and
how they affect the folding, structure, dynamics, and stability of proteins inside cells. General
physical properties of the intracellular environment, such as high degrees of macromolecular
crowding, excluded volume effects, and increased overall viscosity (29, 30, 68, 69), were identified
early on as disadvantageous for in-cell NMR experiments on large, folded proteins (89). However,
several studies defied the notion that protein size alone determined the quality of in-cell NMR

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Overview of prokaryotic and eukaryotic in-cell NMR systems. (a) Accumulation of isotope-labeled protein
inside Escherichia coli by T7 promoter–driven overexpression. (b) AOX1-driven protein production in the
yeast Pichia pastoris. (c) Baculovirus (BV)-infected insect Sf9 cells. (d ) Cytomegalovirus (CMV) promoter–
driven protein overexpression and isotopic labeling in human HEK293T cells. (e) Delivery of isotope-
labeled proteins by microinjection into Xenopus laevis oocytes. ( f ) Transduction of cell-penetrating peptide
(CPP)-tagged (cyan) cargo proteins into cultured mammalian cells. ( g) Delivery of isotope-labeled proteins
into mammalian cells through bacterial pore-forming toxins (blue). Cells not drawn to scale.
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spectra. Below, we discuss experiments that illuminated the nature of some inherent protein
properties driving in-cell NMR behaviors.

Our first example is the B1 domain of the streptococcal protein G (GB1), which has served
the in-cell NMR community as a reliable gold standard ever since its astounding in-cell NMR
qualities were reported in X. laevis oocytes (86). GB1 is a 56-residue, folded protein domain that is
highly negatively charged [∼6.2 kDa, isoelectric point (pI) 4.2] and is often considered biologically
inert. All GB1 in-cell NMR spectra collected thus far in different cell types have been of excellent
quality. By contrast, ubiquitin (Ub), a similarly small, 76-residue folded protein (∼8.6 kDa, pI 5.7)
yielded in-cell NMR spectra of varying quality. Whereas Burz et al. (18) obtained in-cell NMR
spectra in E. coli, many other groups were unable to do so (13, 57, 100). In higher eukaryotic cells,
in-cell NMR signals of wild-type Ub were equally difficult to detect, whereas a Ub mutant with
alanine substitutions at three conserved surface residues (i.e., Ub-3A) produced reasonable in-cell
NMR spectra (42, 82). In bacteria, the same Ub-3A mutant failed to yield in-cell NMR signals
(100). Once again, the Shekhtman laboratory (16) delivered the exception to the rule by reporting
decent quality in-cell NMR data on wild-type Ub inside the yeast P. pastoris. This time, though,
they used the heterologous Saccharomyces cerevisiae isoform of Ub, which has a more neutral net
charge (∼8.5 kDa, pI 7.3). Upon cell lysis, most groups detected good-quality Ub or Ub-3A NMR
signals in crude cell extracts, thus indicating that severe in-cell line broadening was not caused by
stable interactions with cellular components.

Wang et al. (100) realized that a double GB1 construct containing two concatenated domains
(∼12.5 kDa, pI 4.4) produced excellent in-cell NMR spectra, whereas a GB1-NmerA fusion
yielded sharp GB1 signals and severely line-broadened NmerA resonances (NmerA: ∼6.9 kDa, pI
7.2). After cell lysis, uniform NMR signals of both domains were detected. Along the same lines,
Crowley et al. (22) comparatively analyzed the bacterial in-cell NMR behavior of GB1 and several
cytochrome c (Cyt c) variants (∼12.2 kDa, pI 9.8). Wild-type and mutant Cyt c with substitutions
of positively charged residues that reduced the net charge state from 9.8 to 8.2 (i.e., Cyt c-R13E/
K73E/K87E) were not detected inside cells. When the authors separated crude cell extracts of
these in-cell NMR samples by size-exclusion chromatography, they found that only GB1 eluted
according to its molecular weight, whereas all forms of Cyt c were retained in high-molecular-
weight fractions. These results suggested that Cyt c interacted with endogenous components of
the E. coli cytoplasm, which in turn may have negatively affected its in-cell NMR properties.

What factors determine whether a protein engages in intracellular interactions? The most
important is probably its biological activity. Ub, for example, executes a plethora of biological
functions in organisms of all phyla, and most of these functions are mediated by interactions with
other cellular proteins. Therefore, Ub is poised to engage in multiple interactions inside cells that
probably also scavenge nonphysiological amounts of overexpressed protein. Poor quality in-cell
NMR spectra are likely to result from such interactions. Analogously, the biological activity of the
DNA-binding protein MetJ hampers its in-cell NMR detection through nonspecific interactions
with cellular DNA (4). Similar effects are expected for many other proteins that engage in generic
interactions with cellular components, especially when their respective binding partners are overly
abundant in the cytoplasm. Unsuccessful, and therefore unpublished, in-cell NMR attempts with
different WW and SH3 domains binding to proline-rich protein sequences bear silent witness to
this notion.

Other proteins such as Cyt c may engage less overtly in specific interactions but exhibit surface
charge properties that predispose them to nonspecific binding events. Indeed, Cyt c uses a highly
positively charged surface area to interact with two coenzymes, Cyt c reductase and oxidase. Be-
cause both coenzymes are absent from the cytoplasm of E. coli, this surface area is likely to attract
a multitude of unspecific electrostatic interactions. Indeed, when Crowley et al. (22) increased
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the salt concentration in their cell extracts, wild-type and mutant Cyt c eluted at smaller molec-
ular weight fractions. Despite these salt-dependent reductions of nonspecific Cyt c interactions,
severe line broadening persisted in E. coli lysates. Only NMR signals of the most charge-reduced
Cyt c mutant were detected (22). These data indicate that in addition to biological interactions,
nonspecific electrostatic contributions also affect the quality of in-cell and lysate NMR spectra.
Large positive net charges in particular are detrimental to in-cell NMR studies because of the
abundance of negatively charged biomolecules in any cellular environment [e.g., proteins, nucleic
acids (NAs), and phospholipids]. More than 70–90% of E. coli proteins are acidic or neutral with
pI values between 4 and 7, which strongly suggests that their surfaces are anionic at physiological
pH (59, 97). This in turn may ensure that nonspecific electrostatic contacts are kept to a minimum
so as not to interfere with viable cellular functions that depend on unrestricted protein motions
in the cytoplasm.

In contrast to GB1, Ub, and Cyt c, NmerA is uncharged at physiological pH. Nevertheless,
its in-cell NMR spectrum displays significantly broadened resonances as compared to GB1 (100).
Why does NmerA yield poor in-cell NMR spectra? We allude to cellular interactions of bio-
logically active Ub as a possible reason for its poor in-cell NMR performance and list positive
charges on the surface of Cyt c as mediating weak electrostatic interactions with generic cellular
components that similarly debilitate its in-cell NMR behavior. In the case of NmerA, Wang et al.
(100) and others (26, 39) argue that hydrophobic surface properties constitute yet another physi-
cal parameter that determines the overall stickiness of proteins inside cells (i.e., their tendency to
interact with cellular components). Whereas hydrophobic residues are usually buried in the core
of a folded protein, NmerA exposes a disperse set of aliphatic amino acids on its surface. This may
account for its poor in-cell NMR behavior. In a striking analogy, exposed hydrophobic residues
that facilitate protein-protein interactions also mediate the biological activity of wild-type Ub.
In the better behaved Ub-3A mutant, alanines replace these hydrophobic residues. Therefore,
surface hydrophobicity, protein stickiness, and biological activity may well be interconnected.

Interestingly, NmerA was the first protein to be studied by solution-state in-cell NMR spec-
troscopy, and experiments in 2001 yielded high quality in-cell NMR spectra (88, 89). When the
same protein was reanalyzed under presumably identical conditions about 10 years later, its spec-
tral quality was poorer than that of the original sample (100). What happened? One possible
explanation is a difference in intracellular protein levels. If nonspecific hydrophobic contacts im-
peded the quality of NmerA in-cell NMR spectra, did higher intracellular protein levels promote
NmerA binding to itself? In other words, did recombinant protein overexpression exacerbate
the problem of nonspecific protein-protein interactions? Pielak and colleagues (95) asked this
question in 2009. In their experimental setup, these authors used GFP (∼27 kDa, pI 5.8) and
fluorescence-based readouts of in-cell GFP diffusion to measure changes in intracellular stick-
iness upon co-overexpression of four additional proteins: maltose-binding protein (∼42 kDa,
pI 4.9), tau (∼45 kDa, pI 7.5), α-synuclein (∼14 kDa, pI 4.5), and calmodulin (CaM, ∼17 kDa,
pI 3.9). The authors found no detectable differences in intracellular GFP diffusion, suggesting
that the presence of large amounts of recombinant proteins did not impede intracellular protein
movements on a macroscopic scale.

What happens on the microscopic scale? Can enhanced hydrophobic interactions modulate
the structure of a protein? To address this question, the Pielak group (84) employed a variant of
the immunoglobulin G binding domain of protein L (ProtL) from Streptococcus magnus (wild-type
ProtL, ∼7 kDa, pI 4.5) with lysine to glutamic acid substitutions at seven positions (i.e., Kx7E,
pI 3.1). In contrast to wild-type ProtL, 84% of the Kx7E variant is disordered in solution under
low salt conditions. Differences in nonpolar side-chain solvation (i.e., the substituted amino
acids), rather than an increase in overall negative charge, cause these changes (98). Kx7E folding
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can be triggered in vitro by higher salt concentrations. The unfolding free energy of Kx7E is
−1.0 kcal/mol, which corresponds to a small energy difference between the folded and disordered
protein states. This means that the protein may easily unfold or may be present in solution as an
equilibrium mixture between the folded and unfolded states. Macromolecular crowding theory
predicts that chemically inert, hard-sphere repulsions stabilize folded proteins and promote
folding of disordered proteins by minimizing excluded volume effects (68, 69). Would hard-sphere
repulsions in the E. coli cytoplasm induce folding of Kx7E, according to macromolecular crowding
theory, or would different types of weak intracellular interactions—appropriately termed soft
interactions by Pielak’s group (65, 83)—dominate over hard-sphere repulsions and preserve the
disordered state (70), as experiments on other proteins have shown (15, 66, 67, 101)?

Despite its highly acidic nature, small size, and structural similarity to GB1, overexpressed
ProtL did not yield interpretable in-cell NMR spectra, although it was easily detected upon cell
lysis (84). By contrast, good quality in-cell NMR spectra of Kx7E were obtained, and their char-
acteristics showed that the variant remained disordered in the cytoplasm of intact cells. Increasing
the salt concentration from ∼0.2 M to ∼0.5–0.9 M in vitro induced Kx7E folding, whereas a sim-
ilar increase did not induce folding in cells. These results established that hard-sphere repulsions
were not sufficient to fold Kx7E in vivo and that soft interactions preserved the disordered protein
state, even under conditions that promoted folding in vitro (84).

Latham & Kay (53, 54) investigated the effects of soft interactions on the side-chain dy-
namics of Calmodulin (CaM) in crude bacterial cell lysates (14). They prepared differentially
13C-methyl-labeled CaM in its apo-, holo-, and peptide-bound states [i.e., in complex with
smooth muscle myosin light chain kinase peptide, CaM-smMLCK(p), ∼20 kDa, pI 4.3]. The
structures of these three versions of CaM also differ substantially. Whereas the folded N- and
C-terminal domains of apo-CaM are flexibly connected via a disordered linker region, Ca2+ bind-
ing rigidifies this linker and induces the formation of a stable α-helix. This forces holo-CaM
into a globally extended, dumbbell-shaped structure. Concomitantly, side-chain methyl groups
that are buried in apo-CaM become solvent-exposed. This topology enables smMLCK(p) bind-
ing, upon which holo-CaM tightly wraps around the ligand in a globular conformation, again
shielding its hydrophobic residues from the solvent. These three structural states also differ in the
two-dimensional (2-D) 1H-13C correlation spectra of their methyl groups.

Latham & Kay (53) first exploited these discriminatory features to comparatively analyze the
dynamic properties of selectively isotope-labeled CaM in vitro and in cell lysates. Starting with
Ca2+-free apo-CaM, they established that the amplitude and time scale of pico- to nanosecond
side-chain motions were very similar in aqueous solution and cell lysates. By contrast, greatly at-
tenuated microsecond-timescale motions of apo-CaM were detected in E. coli extracts. To further
characterize these modulations, the authors performed Carr-Purcell-Meiboom-Gill (CPMG) re-
laxation dispersion experiments to probe for differences in millisecond-timescale motions. They
detected substantial degrees of conformational exchange, which were likely caused by transient
side-chain interactions with cellular metals, as lysate EDTA complexation and in vitro metal
titration experiments suggested.

The overall spectral quality of Ca2+-loaded CaM in bacterial cell lysate was considerably poorer
and revealed significant line broadening. Indeed, the greater exposure of hydrophobic surface ar-
eas in Ca2+-CaM indicated that nonspecific hydrophobic interactions with cellular components
accounted for these line broadening effects. Lysate CPMG relaxation dispersion profiles were
greater than those of apo-CaM and also pointed to different protein residues being affected by ex-
change contributions, such as the Ca2+-CaM methionines involved in substrate binding. Latham
& Kay (53) interpreted this behavior as a frustrated ligand search resulting in weak, short-lived
interactions with components of the bacterial cytoplasm. If nonspecific soft interactions were
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indeed to cause these effects, then binding to a high-affinity CaM ligand should reduce line broad-
ening. In support of this hypothesis, the authors measured markedly improved signal intensities of
ligand-complexed CaM-smMLCK(p) in cell lysates reminiscent of apo-CaM. Additional CPMG
experiments indicated that millisecond-timescale motions and exchange contributions had essen-
tially vanished.

In summary, these data substantiated the notion that different soft interactions, ranging from
transient metal binding to frustrated hydrophobic searches, affected CaM’s side-chain dynamics
and, in turn, its spectral quality in bacterial cell lysates. They thus provided compelling exper-
imental evidence that differences in lysate NMR behaviors resulted as a direct consequence of
CaM’s structural and functional properties (53).

In a follow-up study, the same authors characterized the strengths of these nonspecific inter-
actions using lysate titration experiments (54). They measured changes in CaM methyl chemical
shifts as a function of added E. coli extract to determine average minimum dissociation constants
with endogenous lysate components. These lysate KD values were in the low millimolar range
(∼0.22 mM), which is in good agreement with previous estimates for cellular NmerA interac-
tions in intact bacteria (tens of millimolar) (100) and for nonspecific interactions of truncated
chymotrypsin inhibitor 2 (∼7.2 kDa, pI 9.0) with bovine serum albumin as an in vitro crowding
agent (∼35 mM) (67).

In-Cell Maturation and Metal Binding of Human Superoxide Dismutase 1

Human superoxide dismutase1 (hSOD1) is a 16-kDa protein (pI 5.9) that binds one Zn2+ atom at its
structural metal binding site and one Cu2+ atom at its catalytic site. Disulfide bond formation and
dimerization entails hSOD1 maturation (i.e., holo-hSOD1). The protein localizes to the cytoplasm
and intermembrane space of mitochondria, where it is primarily responsible for clearing reactive
oxygen species such as free superoxide radicals to maintain mitochondrial and thereby cellular
homeostasis. Misfolding of apo-hSOD1 during individual steps of the maturation process has
been implicated in many familial forms of amyotrophic lateral sclerosis, also called Lou Gehrig’s
disease, a major neurodegenerative disorder that leads to fatal motor neuron impairments.

The structural, dynamic, and topological folding properties of hSOD1 in its various maturation
steps have been extensively studied in vitro, but high-resolution insights into these processes in
cells were missing until recently. Banci et al. (10) were the first to use bacterial in-cell NMR
to study the structural properties of apo-hSOD1 in E. coli. Upon protein overexpression and
15N isotope labeling in metal-free medium, 2-D spectra revealed strong but poorly dispersed
NMR signals of hSOD1 that superimposed well with the unfolded portions of the metal-free,
monomeric, and reduced protein observed in in vitro NMR experiments (i.e., E,E-hSOD1SH−SH,
where E denotes empty metal-binding sites and SH–SH reduced cysteines). Such strong in-
cell NMR signals of unfolded protein regions and selective line broadening of folded parts of
a protein typically point to faster internal dynamics and more favorable relaxation properties
of disordered protein regions than of folded protein domains, whose relaxation properties are
determined by their overall correlation time, τ c (13, 55). Weak resonances of the folded portions
of E,E-hSOD1SH−SH were detected at NMR chemical shift values similar to those seen in in
vitro experiments. When bacteria were lysed and the cell slurry directly analyzed by NMR, the
peak intensities of NMR signals in all spectral regions increased considerably due to decreased
viscosity and greater overall tumbling. Even the folded portions of E,E-hSOD1SH−SH displayed
signal intensities and peak positions similar to those from in vitro NMR experiments, suggesting
that hSOD1 retained its partially folded in vitro characteristics in E. coli cells and did not scavenge
free metals in the bacterial cytoplasm (i.e., the protein remained in its metal-free apo-state). Peak
positions of cysteine residues further confirmed the preservation of their reduced states.
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When the authors recorded in-cell NMR spectra of apo-SOD1 in the presence of different
amounts of external Zn2+ (ranging from substoichiometric 10 μM to superstoichiometric 1 mM),
they detected all major NMR characteristics of the metal-bound E,Zn-hSOD1SH−SH protein (10).
Surprisingly, however, in-cell NMR signal intensities of folded and unfolded residues in E,Zn-
hSOD1SH−SH were greater than those of apo-SOD1 in the previous in-cell NMR samples, which
challenged the notion that differences in protein dynamics alone accounted for the observed line-
broadening effects. By excluding contributions from oligomerization or aggregation, Banci et al.
(10) reasoned that nonspecific soft interactions with components of the bacterial cytoplasm caused
the weak signal intensities of apo-SOD1. In-cell NMR signals also revealed that the second metal
binding site remained unoccupied in E,Zn-hSOD1SH−SH. The authors noted that, in vitro, the
addition of equimolar amounts of Zn2+ to apo-hSOD1 leads to the formation of mixed popula-
tions of E,Zn-hSOD1SH−SH and Zn,Zn-hSOD1SH−SH, whereas further addition of Zn2+ produces
uniform Zn,Zn-hSOD1SH−SH. These findings were in stark contrast to their in-cell NMR results
in the presence of excess amounts of Zn2+. Only upon cell lysis and extract NMR measurements
did Banci et al. (10) detect the formation of Zn,Zn-hSOD1SH−SH.

These data argue that inside E. coli, a highly effective regulatory mechanism ensures the selec-
tivity of the metal binding reaction and prevents loading of the Cu2+ site with excess Zn2+. One
explanation for the observed behavior was direct surveillance of intracellular Zn2+ levels by the
bacteria, ensuring that only high affinity Zn2+-binding sites were loaded with the metal and that
metal-selective bacterial pumps actively extruded excess free ions from the cytoplasm. Alterna-
tively, E,Zn-hSOD1SH−SH may have existed in intracellular conformations that prevented addi-
tional metal binding, or it may have interacted loosely with cellular components that mediated such
effects. Indeed, several cross-peaks of in-cell or lysate hSOD1 did not superimpose with in vitro
reference spectra of free E,Zn-hSOD1SH−SH, probably indicating additional cellular interactions.
Yet other scenarios involve partial disulfide bond formation, or cysteine oxidation, prior to second
metal binding, which could have occurred upon cell lysis. Banci et al. (10) did not analyze the in-cell
NMR behavior of Cu2+ binding at that point because gram-negative bacteria such as E. coli contain
very little free cytoplasmic Cu2+ and have efficient efflux pumps to remove intracellular copper.

In a breakthrough attempt to study hSOD1 maturation in intact human cells, Banci et al. (11)
developed a new protocol for sample overexpression, isotope labeling, and in-cell NMR mea-
surements in cultured embryonic kidney HEK293T cells. In the absence of exogenous metals in
the growth media, they observed E,E-hSOD1SH−SH with NMR characteristics similar to those in
bacterial cells, i.e., intense NMR signals of unfolded apo-SOD1 regions and selective line broad-
ening of folded parts of the protein. Trace amounts of uncomplexed Zn2+ led to the formation
and detection of small amounts of E,Zn-hSOD1SH−SH. When growth media were supplemented
with Zn2+, apo-hSOD1 was efficiently converted into E,Zn-hSOD1SH−SH, which similarly yielded
high quality in-cell NMR spectra. This indicated that, similar to E. coli, Zn2+ was efficiently taken
up by mammalian cells and selectively bound to one of the metal sites of apo-hSOD1.

At this point, the authors revisited their E. coli in-cell NMR system to comparatively investigate
the binding behavior of copper (11). When Zn2+ and Cu2+ salts were added to the bacterial
growth medium, in-cell NMR experiments of 15N isotope-labeled hSOD1 reported the reduction
of Cu2+ to Cu+ and the formation of mixed Cu,Zn-hSOD1SH−SH and Cu,Zn-hSOD1S−S species.
This showed that in the bacterial cytoplasm, intracellular hSOD1 bound copper, which coincided
with partial disulfide bond formation. Interestingly, the direct addition of Cu+ salts to the growth
medium did not result in copper binding. When hSOD1 loading with copper was studied in
mammalian cells, only ∼25% of intracellular E,Zn-hSOD1SH−SH bound the metal in its Cu+

state, whereas ∼75% remained copper-free. Accordingly, only ∼20% of hSOD1 formed disulfide
bonds.
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Because eukaryotic copper homeostasis is tightly controlled at multiple levels and efficient
hSOD1 copper loading requires the activity of the copper chaperone for SOD1 (CCS) protein,
Banci et al. (11) co-overexpressed and isotopically labeled hSOD1 and CCS in HEK293T cells.
In the presence of Cu2+ salts, in-cell NMR experiments showed a higher ratio of copper/zinc-
to zinc-bound hSOD1 (1:1), supporting the notion that CCS promoted copper incorporation. In
addition, they observed efficient formation of disulfide bonds, which was further stimulated by
Cu2+. At lower expression levels and intracellular concentrations of hSOD1 (∼40 μM) and CCS
(∼15 μM), the authors detected complete disulfide bond formation of E,Zn-hSOD1S−S, which
suggested that this process also occurred independently of copper binding. Together, these data
provided the first atomic-resolution insights into the maturation process of a human protein in a
close-to-native intracellular environment.

Danielsson et al. (25) concurrently presented a similar in-cell NMR study on hSOD1 in human
HeLa cells. In contrast to Banci et al. (11), these authors did not use sample overexpression and
in-cell NMR measurements within the same cell type but instead delivered exogenously produced
and isotope-labeled hSOD1 via the CPP tagging, protein transduction approach (42). Although
hSOD1 overexpression yielded high quality in-cell NMR spectra in human HEK293T cells (11),
transduction of homodimeric, full-length SOD1 into human HeLa cells was not achieved. Simi-
lar negative results were obtained with a monomeric, enzymatically active variant of SOD1, i.e.,
holoSOD1pwt. Even a fully alanine-substituted, cysteine-depleted mutant, i.e., apo-hSOD1CallA,
was not internalized, collectively demonstrating that the efficiency of CPP-mediated protein de-
livery varies greatly between different cargos, even when they constitute different versions of the
same protein.

Although not all mechanistic aspects of CPP-dependent intracellular protein delivery are well
understood, positive net charges of the to-be-delivered CPP-cargo moieties are believed to be in-
strumental for efficient membrane crossing. Because hSOD1pwt has a negative net charge only par-
tially ameliorated by the presence of the eight-arginine CPP tag (the net charge of R8-hSOD1pwt

is ∼0), Danielsson et al. (25) reasoned that removing hSOD1 active site loops IV and VII (i.e.,
hSOD1�IV�VII) and changing the net charge to +5.4 might improve CPP-mediated cellular up-
take. This was indeed the case. Consequently, in-cell NMR spectra of this hSOD1 mutant were
of good quality and displayed well-dispersed resonance cross-peaks of folded hSOD1�IV�VII. The
chemically distinct CPP tag HIV-Tat gave similar results. In-cell NMR spectra revealed that
hSOD1�IV�VII histidines were protonated, suggesting low pH conditions (∼6.2) and considerable
acidification of the HeLa cell cytoplasm, likely caused by metabolic ATP hydrolysis and oxygen
deprivation when the growth medium is not replenished.

Indeed, nutrient depletion and metabolic exhaustion prompted Kubo et al. (52) to develop
a miniature bioreactor for in-cell NMR applications in mammalian cells. In their setup, hu-
man HeLa S3 cells, grown in suspension, were targeted with isotope-labeled CAP-Gly1 (CG1,
pI 5.2), the 9-kDa microtubule (MT)-binding domain of the human CLIP-170 protein, using
the pore-forming bacterial toxin SLO (71). Cells were immobilized in a liquid three-dimensional
matrix biogel solidified in a modified flow-cell NMR probe. Continuous media exchange ensured
optimal control over metabolic parameters, such as intracellular ATP and pH, improving the
overall quality of CG1 in-cell NMR spectra and leading to a substantial reduction in protein
leakage (14). The authors subsequently recorded 1H-13C-methyl-TROSY in-cell NMR spectra
over extended periods of time without sample deterioration (52). Their bioreactor setup also en-
abled in-cell transferred cross-saturation experiments between delivered, isotope-labeled CG1
and endogenous HeLa MTs. Results from these experiments confirmed that the same set of CG1
residues that interacted with MTs in vitro also bound to MTs in mammalian cells (52). A similar
bioreactor setup was introduced for in-cell NMR measurements in bacteria (91).

www.annualreviews.org • Live Cell NMR 181

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

01
4.

43
:1

71
-1

92
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

68
92

 L
ei

bn
iz

-I
ns

tit
ut

 f
ue

r 
M

ol
ek

ul
ar

e 
Ph

ar
m

ak
ol

og
ie

 (
FM

P)
 o

n 
11

/2
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



BB43CH08-Selenko ARI 12 May 2014 9:5

Besides hSOD1, Banci et al. (11, 12) examined four other folded human proteins in hu-
man HEK293T cells: the mitochondrial intermembrane space importer and assembly protein
40 (Mia40, ∼16 kDa, pI 4.0), glutaredoxin-1 (Grx1, ∼12 kDa, pI 7.9), thioredoxin (Trx, ∼12 kDa,
pI 4.6), and the copper transporter Atox1 (∼7.5 kDa, pI 7.0). Whereas all proteins were over-
expressed to comparable intracellular levels, only Mia40 and Atox1 yielded interpretable in-cell
NMR spectra. Grx1 and Trx1 remained invisible in intact cells and were detected only upon cell
lysis. In-cell NMR studies of Atox1 binding to the anticancer drug cisplatin in bacteria were previ-
ously reported by the same group (2). Given these proteins’ different sizes and overall net charges,
no clear correlations between their in-cell NMR behaviors and general physical properties could
be established.

Upon Mia40 overexpression in mammalian cells, in-cell NMR measurements revealed that the
protein was predominantly cytoplasmic and remained in its fully oxidized, folded state despite the
reducing cytoplasmic environment (12), indicating that high levels of endogenous agents, such as
glutathione, did not reduce the protein. Because Grx1 and Trx1 are cytoplasmic oxidoreductases
that also control cellular thiol homeostasis, Banci et al. (12) co-overexpressed Mia40 with Grx1.
In-cell NMR spectra showed that under these conditions, Mia40 was mostly unfolded and reduced,
whereas co-overexpression with Trx1 had a smaller effect. In contrast to what was observed in
intact cells, increasing amounts of fully reduced Grx1 had no effect on the redox state of Mia402S−S

when both proteins were reacted in vitro in the presence of dithiothreitol or reduced glutathione.
These results excluded a mechanistic notion that Grx1 was directly involved in the reduction of
Mia402S−S. They also suggested that cellular activities other than Grx1 alone were required to
maintain cytoplasmic Mia40 in its reduced form in vivo. Yet again, these conclusions underscore
the tremendous biological impacts that simple in-cell NMR measurements can have.

In-Cell NMR of DNA and RNA

The advent of in-cell NMR applications in X. laevis oocytes and targeted delivery of isotope-
labeled proteins by microinjection also spurred in-cell NMR studies of nucleic acids (NAs) (36–
38, reviewed in 35). Initially, isotope-labeled DNA and RNA hairpins were injected into Xenopus
oocytes, and 2-D 1H-13C correlation experiments were recorded over ∼20 h (36). Site-specific exo-
and endonuclease cleavage of the DNA hairpin was observed after 5 h—which eventually led to
the production of single nucleotides—but the RNA hairpin proved to be more stable. However, it
was more prone to nonspecific interactions with cellular components, which similarly diminished
specific NMR signals over time. Synthetic incorporation of noncleavable phosphorothioate bonds
in the two hairpins and methylation of the RNA O2′-hydroxyls rendered both structures nuclease-
resistant. This indicates that high-resolution in-cell NMR studies of unmodified DNA and RNA
hairpins are feasible within a time window of 2–5 h, whereas modified NAs can be analyzed over
extended periods of time. Hänsel et al. (36) further showed that the 1-D 1H region between 11.0
and 14.0 ppm of intact Xenopus oocytes, corresponding to the imino-proton region of NAs, is
devoid of background proton signals. Therefore, qualitative in-cell NMR experiments can also be
performed on non-13C- or 15N-isotope-labeled, injected NA samples, by exploiting their NMR-
active proton signals only.

The human telomeric repeat sequence d(G3(TTAG3)3T) was the first guanine-rich NA
quadruplex (G-quadruplex) structure to be investigated by in-cell NMR (36). G-quadruplexes
form at the 3′ end of vertebrate chromosomes, where thousands of tandem repeats of the G-rich
sequence (GGGTTA)n constitute the chromosomal end structures called telomeres. Many in
vitro studies of various telomeric four-G-repeat sequences indicated that their folding topologies
greatly depend on the experimental conditions employed for their characterization. Factors that
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modulate G-quadruplex structures in vitro include sequence composition, the presence and type
of counterions, and the degree of macromolecular crowding.

Whereas the 1-D proton spectrum of unlabeled, isolated d(G3(TTAG3)3T) confirmed the
presence of the two-tetrad antiparallel basket-type G-quadruplex structure, Hänsel et al. (36)
obtained a strikingly different imino-proton envelope in intact Xenopus oocytes that suggested
alternative conformations inside these cells. Upon oocyte lysis, mixed populations of basket- and
nonbasket-type structures were detected and quantitatively converted into the original topol-
ogy when precipitated with butanol and resuspended in NMR buffer (36). A similar study in
polyethylene glycol (PEG)- and Ficoll-crowded in vitro solutions showed that the structural prop-
erties of TAG3(TTAG3)3, i.e., TA-core, and AG3(TTAG3)3TT, i.e., A-core TT G-quadruplex,
were substantially different than in Xenopus cytostatic factor (CSF)-arrested eggs extracts (37).
Whereas crowding with PEG induced stacking of preferentially parallel G-quadruplex conforma-
tions, crowding with Ficoll preserved unimolecular conformations also found in dilute potassium
solutions. Interestingly, G-quadruplexes in CSF extracts displayed varying degrees of structural
heterogeneity that corresponded to superpositions of the original hybrid and alternative confor-
mations, potentially resembling the parallel topology obtained in PEG environments. This argues
that mixed populations of interconverting conformers exist in physiological solutions. To increase
spectral resolution under cellular conditions, Hänsel et al. (38) employed 2-D 1H-15N correlation
NMR experiments and 15N-13C isotope-labeled d(AG3(TTAG3)3) to demonstrate that the Xeno-
pus CSF extract-folded G-quadruplex exhibited the hybrid-1 topology, which is also prominently
populated in dilute potassium solutions.

In-Cell EPR

In-cell NMR work on proteins and G-quadruplex structures in X. laevis oocytes also led to the
development of novel pulsed-field electron paramagnetic resonance (EPR) and double electron-
electron resonance (PELDOR or DEER) spectroscopy applications, in combination with site-
directed spin labeling (SDSL) in this particular cell type (5–8, 41, 51). EPR and DEER applica-
tions are advantageous in that they provide long-range distance information (1.5 to 8 nm) between
unpaired electron spin centers introduced into proteins or NAs. This broad range of measurable
distances is comparable to Förster resonance energy transfer (FRET) techniques. One major
obstacle to EPR applications in live cells is the difficulty of generating spin labels that bear no
reducible protein/NA linkages and thus can withstand the reducing environment of the intra-
cellular space (5, 41, 51). In their pilot DEER study in Xenopus oocytes, Igarashi et al. (41) used
maleimide conjugation instead of disulfide coupling to introduce stable spin labels (nitroxide-based
3-maleimido-PROXYL) at three Ub positions to comparatively analyze intramolecular distances
in dilute in vitro solutions and intact cells. Sample delivery by microinjection and in-cell DEER
measurements yielded comparable distances between the individual spin centers in both envi-
ronments, which collectively suggested that the global folding topology of this small protein is
preserved in the intracellular space of Xenopus oocytes. The data from Igarashi et al. (41) also
indicated that the employed nitroxide radicals had limited lifetimes (∼1 h) and presumably suc-
cumbed to reductive conversion and the formation of EPR-silent hydroxylamines, thus illustrating
the need for spin labels with longer half-lives in physiological environments.

Azarkh et al. (5) and Krstić et al. (51) investigated the cellular lifetimes of different spin la-
bels in more detail and found that chemically similar probes were reduced at different rates in
Xenopus CSF extracts, which, the authors argued, supported the notion that intracellular nitroxide
reduction constituted an enzyme-mediated process. The Drescher group (6) and Krstić et al. (51)
investigated complementary double-stranded and spin-labeled DNA 7- and 12-mers in Xenopus
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19F IN-CELL NMR

19F-labeled proteins are becoming increasingly important for in-cell NMR applications (56, 57, 61, 92, 104, 108,
109). 19F bears several advantages as it has a spin quantum number of 1/2, rendering NMR detection straightforward.
With a gyromagnetic ratio (γn) that is 83% that of a proton, 19F is a highly sensitive nucleus, and its spectral
simplicity and large chemical shift range are attractive for protein-based applications. Site-selective 19F isotopic
labeling of tryptophan, tyrosine, or phenylalanine side chains can be achieved via incorporation of orthogonal
aminoacyl-tRNA synthetase/tRNA pairs and unnatural amino acids at engineered amber codon sites (60). This
method was first employed in 2007 to produce site-selective, 19F-labeled proteins for structural studies (34, 45).
Simpler and more economical 19F labeling of tryptophan is accomplished by recombinant protein expression in
5-fluoroindole-containing growth media (23).

oocytes, respectively. The shorter 7-mer displayed comparable in vitro and in-cell DEER distances
between the engineered spin pairs, although with a broader in-cell distance distribution, possibly
caused by partial DNA melting (6). In-cell DEER measurements of the longer and less A-T-rich
12-mer revealed a superposition of mixed distance states (51). One of these states was attributed to
the monomeric DNA duplex conformation with in-cell DEER distances that deviated little from
in vitro measurements; the other originated from an end-to-end duplex stacking topology, a well-
known phenomenon of double-stranded DNA of this size. Together, these data demonstrated
that short, double-stranded, B-form DNA retains its conformation inside live oocyte cells.

Krstić et al. (51) further characterized in-cell distance properties of 14- and 27-mer RNA hairpin
and riboswitch structures, respectively. Immediately after oocyte injection, DEER measurements
revealed fast transverse relaxation rates that decreased considerably over time. The authors inter-
preted this behavior as reflecting high initial spin concentrations following the injection process
that progressively weakened because of intracellular diffusion and spin-label reduction. Overall,
both RNA structures retained their in vitro conformations inside Xenopus oocytes, confirming the
stability of these topologies under native cellular conditions.

Spin labels can also be used to complement and clarify structural insights from other methods.
As an example, we return to where we left off in the in-cell NMR study of the d(AG3(TTAG3)3)
G-quadruplex, which was also investigated in a site-selective, spin-labeled form with in-cell
DEER methods (7). In contrast to in-cell NMR– and fluorescence-derived data [which point
to hybrid-1 conformations in Xenopus oocytes, egg extracts, and potassium solutions at phys-
iological temperatures (38)], results from in-cell DEER measurements at cryogenic temper-
atures suggested that d(AG3(TTAG3)3) coexists in three-tetrad antiparallel basket and paral-
lel propeller structures; these were previously found in dilute potassium solutions (94). When
Hänsel et al. (38) compared in-cell and in vitro measured distances between spin label–modified
thymidines in d(AG3(TTAG3)3) and in silico–derived reference distances from X-ray and NMR
G-quadruplex structures, they could not unambiguously distinguish between parallel propeller,
three-tetrad antiparallel basket, and hybrid-1 structures because of the poor definition of thymine
positions in the previously calculated NMR ensembles.

SOLID-STATE IN-CELL NMR

The requirement for fast rotational tumbling of biomolecules is one major limitation of solution-
state in-cell NMR applications. Although bulk intracellular solvent viscosity is only approximately
twice that of dilute buffers in most cells, weak and nonspecific interactions with cellular components
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often hamper in-cell NMR measurements. Efforts to overcome these detrimental effects include
detection of in-cell 13C-methyl side-chain resonances or the use of 19F NMR (see Sidebar, 19F
In-Cell NMR). In many instances, however, researchers wish to study large macromolecular
assemblies or membrane proteins, which necessitate different approaches. High-resolution magic
angle spinning (HR-MAS) solid-state NMR methods on cellular samples have been successfully
employed to this end (74, 78). Introduced in 2001 to characterize the abundant osmoregulated
periplasmic glucans in Ralstonia solanacearum (103), HR-MAS methods have since been used to
study protein structures in bacterial inclusion bodies (24, 102), intracellular protein assemblies (77),
membrane proteins in isolated membranes (32, 46, 48, 58, 79, 80), and whole cells (47, 80, 99, 105).
Some of these on-cell NMR studies are discussed in Solution-State On-Cell NMR, below. Of
particular note, recent HR-MAS solid-state NMR applications on cellular preparations have used
dynamic nuclear polarization (DNP) enhancement, which, in principle, should greatly improve
sensitivity and make in-cell NMR studies of native membrane systems feasible (46, 58, 79, 99).

SOLUTION-STATE ON-CELL NMR

The power of NMR to provide atomic-resolution insights into physiological processes inside cells
is remarkable. However, many biomolecules function on the cell surface, and a different approach
is required to study their structures. To analyze cell-surface molecules under physiological con-
ditions, different solution- and solid-state on-cell NMR methods have been developed. Because
the protein, lipid, and carbohydrate compositions of individual cells change continuously in re-
sponse to internal and external cues, analyses of these compositions offer important clues toward
metabolic cell states, genetic variations, or environmental perturbations.

Capsular polysaccharides (PSs) are crucial virulence factors on the surface of gram-negative
bacteria. Once isolated and purified, these PSs are administered as vaccines to protect against a host
of bacterial infections from organisms such as Meningococcus, Pneumococcus, and Haemophilus. For
E. coli K1 and Neisseria meningitidis serogroup B, capsular PSs elicit a weaker immune response than
PSs from other gram-negative bacteria. Interestingly, these two bacteria have the same capsular
PS: α(2 → 8) polysialic acid (PSA).

Many researchers have suggested that the weaker immunogenicity of α(2 → 8) PSA is caused by
the formation of lactones or by structural changes that may occur during isolation and purification.
Azurmendi et al. (9) investigated α(2 → 8) PSA on live bacteria and compared it to isolated and
purified α(2 → 8) PSA by supplying E. coli with 15N/13C uniformly labeled sialic acid monomers.
The mutant strain of E. coli used in this study was genetically engineered so that it could not
metabolize sialic acid. Rather, the labeled monomers were incorporated as building blocks in
the α(2 → 8) polymer. Labeled α(2 → 8) PSA was the dominant signal in 2-D NMR spectra
without background interference from other biopolymers such as lipids, proteins, and NAs. Thus,
NMR was used to examine the structure of α(2 → 8) PSA on intact cells and to show that it did
not contain detectable amounts of lactones. Nevertheless, subsequent on-cell NMR studies used a
newly developed NMR pulse sequence to show evidence of lactones in low abundance (12a). These
studies demonstrate that the development of novel NMR methods aimed at delineating details
inside live cells could yield new information. In addition to these details, the original on-cell NMR
spectra also allowed the authors to determine that 50% of the monomers had been converted to
α(2 → 8) PSA when spectra were acquired.

In addition to investigations of cell-surface PSs, many solution-state saturation-transfer dif-
ference and transferred nuclear Overhauser effect NMR experiments have been performed to
characterize peptide interactions with cell-surface proteins on intact mammalian cells (3, 19, 63,
64, 75, 76).
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SOLID-STATE ON-CELL NMR

Because structural modifications change glycan chemical shifts, on-cell NMR studies of glycans
are used to determine their physiological structures. In particular, solid-state on-cell NMR experi-
ments were successfully employed to analyze cell-surface glycans and to follow biologically relevant
processes that alter their composition and conformation (28, 47, 48, 106, 107). In 1999, Jachymek
et al. (44) used solid-state on-cell NMR applications to determine the structural differences among
O-polysaccharide (O-PS) antigens of four strains of Yokenella regensburgei. NMR spectra of these
isolated O-PSs were obtained on intact bacteria. This work showed that the O-PS backbone was the
same for each strain [→3)-α-D-FucpNAc-(1→2)−L-α-D-Hepp-(1→3)-6-deoxy-α-L-Talp-(1→],
but it displayed different degrees of O-acetylation: PCM 2476 was O-acetylated at positions C2
and C4 of the deoxytallose moiety, whereas PCM 2477, 2478, and 2494 were O-acetylated only
at the C2 position. Correspondingly, O-PSs from PCM 2477, 2478, and 2494 were recognized by
one antibody, whereas PCM 2476 reacted with a different antibody. These differences in O-PS
acetylation patterns have important ramifications for vaccine design.

In another on-cell NMR study, Zandomeneghi et al. (105) examined changes in O-PS composi-
tions during the four growth phases—lag, exponential growth, stationary, and death—of Salmonella
enterica, the pathogen that causes gastroenteritis. They showed that O-acetylation of the major
[→2)-α-D-Manp-(1→4)−α-L-Rhap-(1→3)-α-D-Galp-(1→] antigen changed significantly over
time, and this may be directly linked to differences in its immunogenicity. The authors noted
that de-O-acetylation spontaneously occurred when the pH of the continuously grown cultures
increased, whereas O-acetylation levels remained constant when growth conditions were kept
artificially acidic. As before, these findings also have a direct impact on vaccine development.

Other glycans such as peptidoglycan (PG) are important structural elements of outer bacterial
cell walls. PG consists of linear glycan chains cross-linked by short tetrapeptides. The glycan chains
are repeating disaccharide units of N-acetyl glucosamine linked β-1→4 to N-acetyl muramic acid.
Many antibiotics target PG and interfere with a bacterium’s ability to resist external mechanical
stress. Therefore, on-cell NMR studies of drug-PG interactions are very likely to improve rational
drug design.

Indeed, physiological structure–activity relationship studies underscore the great value of on-
cell NMR approaches in aiding the drug design process. In one study, Kim & Schaefer (49)
used solid-state on-cell NMR methods to delineate the mechanisms of substituted chloroere-
momycin interactions with vancomycin-resistant enterococci and Staphylococcus aureus. These au-
thors investigated the on-cell structures of two antibiotic-PG complexes and correlated these with
different inhibitory activities. The antibiotics—N-(4-fluorobenzyl)vancomycin (FBV) and N-(4-
(4-fluorophenyl)benzyl)vancomycin (FPBV)—had different hydrophobic side-chain lengths and
therefore differed in their interactions with PG. To verify this, S. aureus cultures were grown
in D-[1-13C]-alanine–, [1-13C]-glycine–, or L-[ε-15N]-lysine–supplemented growth media, and
internuclear distances between 19F fluorine–substituted FBV and FPBV and between 13C- or
15N-isotope-labeled PG were measured. On-cell rotational-echo double resonance (REDOR)
NMR experiments showed that FBV engaged in fewer PG contacts than FPBV and displayed
higher conformational heterogeneity, which translated into its reduced antimicrobial activity.
Work in a similar vein delineated the mechanisms of action of vancomycin and oritavancin on
intact Enterococcus faecium cells. On-cell REDOR experiments showed that the two antibiotics
bound PG differently and exhibited accordingly different modes of antimicrobial action (72). In
another study, Kim et al. (50) demonstrated that oritavancin bound to isolated S. aureus protoplast
membranes but not to intact protoplasts. On-cell NMR studies offer great hope for assisting in
designing new therapies.
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SUMMARY POINTS

1. Proteins engage in nonspecific and weak interactions with different cellular components.
The range and magnitude of these interactions are protein-specific and depend on bio-
logical activity and on electrostatic and hydrophobic surface properties.

2. Different proteins experience different degrees of nonspecific interactions in differ-
ent cellular and subcellular environments. These interactions affect their in-cell NMR
behaviors.

3. Soft interactions often supersede purely physical, hard-sphere repulsions and must be
taken into account in discussions of the cellular aspects and consequences of macro-
molecular crowding and excluded volume effects (83).

4. Artificial crowding reagents such as Ficoll and PEG do not recapitulate the full range of
biological contributions that proteins experience inside cells (31). Therefore, appropriate
cellular model systems and direct in situ approaches should be employed to study these
effects.

5. Soft interactions also likely contribute to the structural and functional properties of other
intra- and extracellular biomolecules, including NAs, lipids, and glycans.

6. Cellular processes such as posttranslational modifications, redox reactions, processing
and maturation events, and metal binding dynamically alter the chemical, structural, and
functional properties of biomolecules in and on cells. These changes reflect important
physiological properties that must be taken into account when defining a molecule’s
biological activity.

FUTURE ISSUES

1. Given the range of established prokaryotic and eukaryotic in- and on-cell NMR sys-
tems, future studies should be carried out in the most physiologically relevant cellular
environment rather than the most accessible one.

2. The development of a cheap, robust, and generic procedure to generate mammalian
in-cell NMR samples is highly desirable.

3. Live cell NMR applications should employ experimental setups that ensure stable and
controllable environmental and metabolic conditions for in- and on-cell NMR measure-
ments. High-sensitivity NMR flow probes with built-in bioreactors for growing different
cell types are an important next step in hardware development.
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28. Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M. 2011. Structure and interactions of
plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR.
Biochemistry 50:989–1000

29. Ellis RJ. 2001. Macromolecular crowding: an important but neglected aspect of the intracellular envi-
ronment. Curr. Opin. Struct. Biol. 11:114–19

30. Ellis RJ. 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26:597–
604

31. Feig M, Sugita Y. 2012. Variable interactions between protein crowders and biomolecular solutes are
important in understanding cellular crowding. J. Phys. Chem. B 116:599–605

32. Fu R, Wang X, Li C, Santiago-Miranda AN, Pielak GJ, Tian F. 2011. In situ structural characterization of
a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR.
J. Am. Chem. Soc. 133:12370–73

33. First protein in-cell
NMR study in insect
Sf9 cells.

33. Hamatsu J, O’Donovan D, Tanaka T, Shirai T, Hourai Y, et al. 2013. High-resolution het-
eronuclear multidimensional NMR of proteins in living insect cells using a baculovirus protein
expression system. J. Am. Chem. Soc. 135:1688–91

34. Hammill JT, Miyake-Stoner S, Hazen JL, Jackson JC, Mehl RA. 2007. Preparation of site-specifically
labeled fluorinated proteins for 19F-NMR structural characterization. Nat. Protoc. 2:2601–7
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